Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add filters

Language
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.11.27.23299044

ABSTRACT

SARS-CoV-2 was first detected in Sudan on 13th March 2020. Here, we describe the genomic epidemiology of SARS-CoV-2 in Sudan between May 2020 and April 2022 to understand the introduction and transmission of SARS-CoV-2 variants in the country. A total of 667 SARS-CoV-2 positive samples were successfully sequenced using the nCoV-19 Artic protocol on the Oxford Nanopore Technology ([≥]70% genome completeness). The genomes were compared with a select contemporaneous global dataset to determine genetic relatedness and estimate import/export events. The genomes were classified into 37 Pango lineages within the ancestral strain (107 isolates across 13 Pango lineages), Eta variant of interest (VOI) (78 isolates in 1 lineage), Alpha variant of concern (VOC) (10 isolates in 2 lineages), Beta VOC (26 isolates in 1 lineage), Delta VOC (171 isolates across 8 lineages) and Omicron VOC (242 isolates across 12 lineages). We estimated a total of 144 introductions of the observed variants from different countries across the globe. Multiple introductions of the Eta VOI, Beta VOC and Omicron VOC were observed in Sudan mainly from Europe and Africa. These findings suggest a need for continuous genomic surveillance of SARS-CoV-2 to monitor their introduction and spread consequently inform public health measures to combat SARS-CoV-2 transmission.

2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.07.24.23293059

ABSTRACT

Abstract Background The non-pharmaceutical interventions (NPIs) implemented to curb the spread of SARS_CoV_2 early in the COVID_19 pandemic years, disrupted the activity of other respiratory viruses. There is limited data from low and middle income countries (LMICs) to determine whether COVID_19 NPIs also impacted the epidemiology of enteric viruses. We investigated the changes in infection patterns of common enteric viruses among hospitalised children who presented with diarrhoea to a referral hospital in coastal Kenya, in the period spanning the COVID_19 pandemic. Methods A total of 870 stool samples from children under 13 years of age admitted to Kilifi County Hospital between January 2019, and December 2022 were screened for rotavirus group A (RVA), norovirus genogroup II (GII), astrovirus, sapovirus, and adenovirus type F40/41 using realtime reverse transcription polymerase chain reaction. The proportions positive across the four years were compared using the chi-squared test statistic. Results One or more of the five virus targets were detected in 282 (32.4%) cases. A reduction in the positivity rate of RVA cases was observed from 2019 (12.1%, 95% confidence interval (CI) 8.7% to 16.2%) to 2020 (1.7%, 95% CI 0.2% to 6.0%; p < 0.001). However, in the 2022, RVA positivity rate rebounded to 23.5% (95% CI 18.2% to 29.4%). For norovirus GII, the positivity rate fluctuated over the four years with its highest positivity rate observed in 2020 (16.2%; 95% C.I, 10.0% to 24.1%). No astrovirus cases were detected in 2020 and 2021, but the positivity rate in 2022 was similar to that in 2019 (3.1% (95% CI 1.5% to 5.7%) vs 3.3% (95% CI 1.4% to 6.5%)). A higher case fatality rate was observed in 2021 (9.0%) compared to the 2019 (3.2%), 2020 (6.8%) and 2022 (2.1%) (p <0.001). Conclusion Our study finds that in 2020 the transmission of common enteric viruses, especially RVA and astrovirus, in Kilifi Kenya may have been disrupted due to the COVID_19 NPIs. After 2020, local enteric virus transmission patterns appeared to return to prepandemic levels coinciding with the removal of most of the government COVID_19 NPIs.


Subject(s)
COVID-19 , Diarrhea
3.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.07.03.23292158

ABSTRACT

We report a newly emerged SARS-CoV-2 Omicron lineage, named FY.4, that has two unique mutations; spike:Y451H and ORF3a:P42L. FY.4 emergence has coincided with increased SARS-CoV-2 cases in coastal Kenya, April-May 2023. We demonstrate the value of continued SARS-CoV-2 genomic surveillance in the post-acute pandemic era in understanding new COVID-19 outbreaks.


Subject(s)
COVID-19
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.10.26.22281455

ABSTRACT

Background Analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic sequence data from household infections should aid its detailed epidemiological understanding. Using viral genomic sequence data, we investigated household SARS-CoV-2 transmission and evolution in coastal Kenya households. Methods We conducted a case-ascertained cohort study between December 2020 and February 2022 whereby 573 members of 158 households were prospectively monitored for SARS-CoV-2 infection. Households were invited to participate if a member tested SARS-CoV-2 positive or was a contact of a confirmed case. Follow-up visits collected a nasopharyngeal/oropharyngeal (NP/OP) swab on days 1, 4 and 7 for RT-PCR diagnosis. If any of these were positive, further swabs were collected on days 10, 14, 21 and 28. Positive samples with an RT-PCR cycle threshold of <33.0 were subjected to whole genome sequencing followed by phylogenetic analysis. Ancestral state reconstruction was used to determine if multiple viruses had entered households. Results Of 2,091 NP/OP swabs that were collected, 375 (17.9%) tested SARS-CoV-2 positive. Viral genome sequences (>80% coverage) were obtained from 208 (55%) positive samples obtained from 61 study households. These genomes fell within 11 Pango lineages and four variants of concern (Alpha, Beta, Delta and Omicron). We estimated 163 putative transmission events involving members of the sequenced households, 40 (25%) of which were intra-household transmission events while 123 (75%) were infections that likely occurred outside the households. Multiple virus introductions (up-to-5) were observed in 28 (47%) households with the 1-month follow-up period. Conclusions We show that a considerable proportion of SARS-CoV-2 infections in coastal Kenya occurred outside the household setting. Multiple virus introductions frequently occurred into households within the same infection wave in contrast to observations from high income settings, where single introduction appears to be the norm. Our findings suggests that control of SARS-CoV-2 transmission by household member isolation may be impractical in this setting.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
5.
Houriiyah Tegally; James E. San; Matthew Cotten; Bryan Tegomoh; Gerald Mboowa; Darren P. Martin; Cheryl Baxter; Monika Moir; Arnold Lambisia; Amadou Diallo; Daniel G. Amoako; Moussa M. Diagne; Abay Sisay; Abdel-Rahman N. Zekri; Abdelhamid Barakat; Abdou Salam Gueye; Abdoul K. Sangare; Abdoul-Salam Ouedraogo; Abdourahmane SOW; Abdualmoniem O. Musa; Abdul K. Sesay; Adamou LAGARE; Adedotun-Sulaiman Kemi; Aden Elmi Abar; Adeniji A. Johnson; Adeola Fowotade; Adewumi M. Olubusuyi; Adeyemi O. Oluwapelumi; Adrienne A. Amuri; Agnes Juru; Ahmad Mabrouk Ramadan; Ahmed Kandeil; Ahmed Mostafa; Ahmed Rebai; Ahmed Sayed; Akano Kazeem; Aladje Balde; Alan Christoffels; Alexander J. Trotter; Allan Campbell; Alpha Kabinet KEITA; Amadou Kone; Amal Bouzid; Amal Souissi; Ambrose Agweyu; Ana V. Gutierrez; Andrew J. Page; Anges Yadouleton; Anika Vinze; Anise N. Happi; Anissa Chouikha; Arash Iranzadeh; Arisha Maharaj; Armel Landry Batchi-Bouyou; Arshad Ismail; Augustina Sylverken; Augustine Goba; Ayoade Femi; Ayotunde Elijah Sijuwola; Azeddine Ibrahimi; Baba Marycelin; Babatunde Lawal Salako; Bamidele S. Oderinde; Bankole Bolajoko; Beatrice Dhaala; Belinda L. Herring; Benjamin Tsofa; Bernard Mvula; Berthe-Marie Njanpop-Lafourcade; Blessing T. Marondera; Bouh Abdi KHAIREH; Bourema Kouriba; Bright Adu; Brigitte Pool; Bronwyn McInnis; Cara Brook; Carolyn Williamson; Catherine Anscombe; Catherine B. Pratt; Cathrine Scheepers; Chantal G. Akoua-Koffi; Charles N. Agoti; Cheikh Loucoubar; Chika Kingsley Onwuamah; Chikwe Ihekweazu; Christian Noel MALAKA; Christophe Peyrefitte; Chukwuma Ewean Omoruyi; Clotaire Donatien Rafai; Collins M. Morang'a; D. James Nokes; Daniel Bugembe Lule; Daniel J. Bridges; Daniel Mukadi-Bamuleka; Danny Park; David Baker; Deelan Doolabh; Deogratius Ssemwanga; Derek Tshiabuila; Diarra Bassirou; Dominic S.Y. Amuzu; Dominique Goedhals; Donald S. Grant; Donwilliams O. Omuoyo; Dorcas Maruapula; Dorcas Waruguru Wanjohi; Ebenezer Foster-Nyarko; Eddy K. Lusamaki; Edgar Simulundu; Edidah M. Ong'era; Edith N. Ngabana; Edward O. Abworo; Edward Otieno; Edwin Shumba; Edwine Barasa; EL BARA AHMED; Elmostafa EL FAHIME; Emmanuel Lokilo; Enatha Mukantwari; Erameh Cyril; Eromon Philomena; Essia Belarbi; Etienne Simon-Loriere; Etile A. Anoh; Fabian Leendertz; Fahn M. Taweh; Fares Wasfi; Fatma Abdelmoula; Faustinos T. Takawira; Fawzi Derrar; Fehintola V Ajogbasile; Florette Treurnicht; Folarin Onikepe; Francine Ntoumi; Francisca M. Muyembe; FRANCISCO NGIAMBUDULU; Frank Edgard ZONGO Ragomzingba; Fred Athanasius DRATIBI; Fred-Akintunwa Iyanu; Gabriel K. Mbunsu; Gaetan Thilliez; Gemma L. Kay; George O. Akpede; George E Uwem; Gert van Zyl; Gordon A. Awandare; Grit Schubert; Gugu P. Maphalala; Hafaliana C. Ranaivoson; Hajar Lemriss; Hannah E Omunakwe; Harris Onywera; Haruka Abe; HELA KARRAY; Hellen Nansumba; Henda Triki; Herve Alberic ADJE KADJO; Hesham Elgahzaly; Hlanai Gumbo; HOTA mathieu; Hugo Kavunga-Membo; Ibtihel Smeti; Idowu B. Olawoye; Ifedayo Adetifa; Ikponmwosa Odia; Ilhem Boutiba-Ben Boubaker; Isaac Ssewanyana; Isatta Wurie; Iyaloo S Konstantinus; Jacqueline Wemboo Afiwa Halatoko; James Ayei; Janaki Sonoo; Jean Bernard LEKANA-DOUKI; Jean-Claude C. Makangara; Jean-Jacques M. Tamfum; Jean-Michel Heraud; Jeffrey G. Shaffer; Jennifer Giandhari; Jennifer Musyoki; Jessica N. Uwanibe; Jinal N. Bhiman; Jiro Yasuda; Joana Morais; Joana Q. Mends; Jocelyn Kiconco; John Demby Sandi; John Huddleston; John Kofi Odoom; John M. Morobe; John O. Gyapong; John T. Kayiwa; Johnson C. Okolie; Joicymara Santos Xavier; Jones Gyamfi; Joseph Humphrey Kofi Bonney; Joseph Nyandwi; Josie Everatt; Jouali Farah; Joweria Nakaseegu; Joyce M. Ngoi; Joyce Namulondo; Judith U. Oguzie; Julia C. Andeko; Julius J. Lutwama; Justin O'Grady; Katherine J Siddle; Kathleen Victoir; Kayode T. Adeyemi; Kefentse A. Tumedi; Kevin Sanders Carvalho; Khadija Said Mohammed; Kunda G. Musonda; Kwabena O. Duedu; Lahcen Belyamani; Lamia Fki-Berrajah; Lavanya Singh; Leon Biscornet; Leonardo de Oliveira Martins; Lucious Chabuka; Luicer Olubayo; Lul Lojok Deng; Lynette Isabella Ochola-Oyier; Madisa Mine; Magalutcheemee Ramuth; Maha Mastouri; Mahmoud ElHefnawi; Maimouna Mbanne; Maitshwarelo I. Matsheka; Malebogo Kebabonye; Mamadou Diop; Mambu Momoh; Maria da Luz Lima Mendonca; Marietjie Venter; Marietou F Paye; Martin Faye; Martin M. Nyaga; Mathabo Mareka; Matoke-Muhia Damaris; Maureen W. Mburu; Maximillian Mpina; Claujens Chastel MFOUTOU MAPANGUY; Michael Owusu; Michael R. Wiley; Mirabeau Youtchou Tatfeng; Mitoha Ondo'o Ayekaba; Mohamed Abouelhoda; Mohamed Amine Beloufa; Mohamed G Seadawy; Mohamed K. Khalifa; Mohammed Koussai DELLAGI; Mooko Marethabile Matobo; Mouhamed Kane; Mouna Ouadghiri; Mounerou Salou; Mphaphi B. Mbulawa; Mudashiru Femi Saibu; Mulenga Mwenda; My V.T. Phan; Nabil Abid; Nadia Touil; Nadine Rujeni; Nalia Ismael; Ndeye Marieme Top; Ndongo Dia; Nedio Mabunda; Nei-yuan Hsiao; Nelson Borico Silochi; Ngonda Saasa; Nicholas Bbosa; Nickson Murunga; Nicksy Gumede; Nicole Wolter; Nikita Sitharam; Nnaemeka Ndodo; Nnennaya A. Ajayi; Noel Tordo; Nokuzola Mbhele; Norosoa H Razanajatovo; Nosamiefan Iguosadolo; Nwando Mba; Ojide C. Kingsley; Okogbenin Sylvanus; Okokhere Peter; Oladiji Femi; Olumade Testimony; Olusola Akinola Ogunsanya; Oluwatosin Fakayode; Onwe E. Ogah; Ousmane Faye; Pamela Smith-Lawrence; Pascale Ondoa; Patrice Combe; Patricia Nabisubi; Patrick Semanda; Paul E. Oluniyi; Paulo Arnaldo; Peter Kojo Quashie; Philip Bejon; Philippe Dussart; Phillip A. Bester; Placide K. Mbala; Pontiano Kaleebu; Priscilla Abechi; Rabeh El-Shesheny; Rageema Joseph; Ramy Karam Aziz; Rene Ghislain Essomba; Reuben Ayivor-Djanie; Richard Njouom; Richard O. Phillips; Richmond Gorman; Robert A. Kingsley; Rosemary Audu; Rosina A.A. Carr; Saad El Kabbaj; Saba Gargouri; Saber Masmoudi; Safietou Sankhe; Sahra Isse Mohamed; Salma MHALLA; Salome Hosch; Samar Kamal Kassim; Samar Metha; Sameh Trabelsi; Sanaa Lemriss; Sara Hassan Agwa; Sarah Wambui Mwangi; Seydou Doumbia; Sheila Makiala-Mandanda; Sherihane Aryeetey; Shymaa S. Ahmed; SIDI MOHAMED AHMED; Siham Elhamoumi; Sikhulile Moyo; Silvia Lutucuta; Simani Gaseitsiwe; Simbirie Jalloh; Soafy Andriamandimby; Sobajo Oguntope; Solene Grayo; Sonia Lekana-Douki; Sophie Prosolek; Soumeya Ouangraoua; Stephanie van Wyk; Stephen F. Schaffner; Stephen Kanyerezi; Steve AHUKA-MUNDEKE; Steven Rudder; Sureshnee Pillay; Susan Nabadda; Sylvie Behillil; Sylvie L. Budiaki; Sylvie van der Werf; Tapfumanei Mashe; Tarik Aanniz; Thabo Mohale; Thanh Le-Viet; Thirumalaisamy P. Velavan; Tobias Schindler; Tongai Maponga; Trevor Bedford; Ugochukwu J. Anyaneji; Ugwu Chinedu; Upasana Ramphal; Vincent Enouf; Vishvanath Nene; Vivianne Gorova; Wael H. Roshdy; Wasim Abdul Karim; William K. Ampofo; Wolfgang Preiser; Wonderful T. Choga; Yahaya ALI ALI AHMED; Yajna Ramphal; Yaw Bediako; Yeshnee Naidoo; Yvan Butera; Zaydah R. de Laurent; Ahmed E.O. Ouma; Anne von Gottberg; George Githinji; Matshidiso Moeti; Oyewale Tomori; Pardis C. Sabeti; Amadou A. Sall; Samuel O. Oyola; Yenew K. Tebeje; Sofonias K. Tessema; Tulio de Oliveira; Christian Happi; Richard Lessells; John Nkengasong; Eduan Wilkinson.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.17.22273906

ABSTRACT

Investment in Africa over the past year with regards to SARS-CoV-2 genotyping has led to a massive increase in the number of sequences, exceeding 100,000 genomes generated to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence within their own borders, coupled with a decrease in sequencing turnaround time. Findings from this genomic surveillance underscores the heterogeneous nature of the pandemic but we observe repeated dissemination of SARS-CoV-2 variants within the continent. Sustained investment for genomic surveillance in Africa is needed as the virus continues to evolve, particularly in the low vaccination landscape. These investments are very crucial for preparedness and response for future pathogen outbreaks.

6.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.18.22272503

ABSTRACT

By 31st December 2021, Seychelles, an archipelago of 115 islands in the Indian Ocean, had confirmed 24,788 cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The first SARS-CoV-2 cases in Seychelles were reported on 14th March 2020, but cases remained low until January 2021, when a surge of SARS-CoV-2 cases was observed on the islands. Here, we investigated the potential drivers of the surge by genomic analysis 1,056 SARS-CoV-2 positive samples collected in Seychelles between 14th March 2020 and 31st December 2021. The Seychelles genomes were classified into 32 Pango lineages, 1,042 of which fell within four variants of concern i.e., Alpha, Beta, Delta and Omicron. Sporadic of SARS-CoV-2 detected in Seychelles in 2020 were mainly of lineage B.1 (Europe origin) but this lineage was rapidly replaced by Beta variant starting January 2021, and which was also subsequently replaced by the Delta variant in May 2021 that dominated till November 2021 when Omicron cases were identified. Using ancestral state reconstruction approach, we estimated at least 78 independent SARS-CoV-2 introduction events into Seychelles during the study period. Majority of viral introductions into Seychelles occurred in 2021, despite substantial COVID-19 restrictions in place during this period. We conclude that the surge of SARS-CoV-2 cases in Seychelles in January 2021 was primarily due to introduction of the more transmissible SARS-CoV-2 variants into the islands.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.01.21259583

ABSTRACT

The transmission networks of SARS-CoV-2 in sub-Saharan Africa remain poorly understood. We analyzed 684 genomes from samples collected across six counties in coastal Kenya during the first two waves (March 2020 - February 2021). Up to 32 Pango lineages were detected in the local sample with six accounting for 88.0% of the sequenced infections: B.1 (60.4%), B.1.1 (8.9%), B.1.549 (7.9%), B.1.530 (6.4%), N.8 (4.4%) and A (3.1%). In a contemporaneous global sample, 571 lineages were identified, 247 for Africa and 88 for East Africa. We detected 262 location transition events comprising: 64 viral imports into Coastal Kenya; 26 viral exports from coastal Kenya; and 172 inter-county import/export events. Most international viral imports (61%) and exports (88%) occurred through Mombasa, a key coastal touristic and commercial center; and many occurred prior to June 2020, when stringent local COVID-19 restriction measures were enforced. After this period, local transmission dominated, and distinct local phylogenies were seen. Our analysis supports moving control strategies from a focus on international travel to local transmission.


Subject(s)
COVID-19
8.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.17.21259100

ABSTRACT

Policy decisions on COVID-19 interventions should be informed by a local, regional and national understanding of SARS-CoV-2 transmission. Epidemic waves may result when restrictions are lifted or poorly adhered to, variants with new phenotypic properties successfully invade, or when infection spreads to susceptible sub-populations. Three COVID-19 epidemic waves have been observed in Kenya. Using a mechanistic mathematical model we explain the first two distinct waves by differences in contact rates in high and low social-economic groups, and the third wave by the introduction of a new higher-transmissibility variant. Reopening schools led to a minor increase in transmission between the second and third waves. Our predictions of current population exposure in Kenya (∼75% June 1st) have implications for a fourth wave and future control strategies. One Sentence Summary COVID-19 spread in Kenya is explained by mixing heterogeneity and a variant less constrained by high population exposure


Subject(s)
COVID-19 , Encephalitis, Arbovirus
9.
Wellcome Open Research ; 2020.
Article in English | ProQuest Central | ID: covidwho-618097

ABSTRACT

Introduction: Human coronaviruses (HCoVs) circulate endemically in human populations, often with seasonal variation. We describe the long-term patterns of paediatric disease associated with three of these viruses, HCoV-NL63, OC43 and 229E, in coastal Kenya. Methods: Continuous surveillance of pneumonia admissions was conducted at the Kilifi county hospital (KCH) located in the northern coastal region of Kenya. Children aged 5 years admitted to KCH with clinically defined syndromic severe or very severe pneumonia were recruited. Respiratory samples were taken and tested for 15 virus targets, using real-time polymerase chain reaction. Unadjusted odds ratios were used to estimate the association between demographic and clinical characteristics and HCoV positivity. Results: From 2007 to 2019, we observed 11,445 pneumonia admissions, of which 314 (3.9%) tested positive for at least one HCoV type. There were 129 (41.1%) OC43, 99 (31.5%) 229E, 74 (23.6%) NL63 positive cases and 12 (3.8%) cases of HCoV to HCoV coinfection. Among HCoV positive cases, 47% (n=147) were coinfected with other respiratory virus pathogens. The majority of HCoV cases were among children aged 1 year (66%, n=208), though there was no age-dependence in the proportion testing positive. HCoV-OC43 was predominant of the three HCoV types throughout the surveillance period. Evidence for seasonality was not identified. Conclusions: Overall, 4% of paediatric pneumonia admissions were associated with three endemic HCoVs, with a high proportion of cases co-occurring with another respiratory virus, with no clear seasonal pattern, and with the age-distribution of cases following that of pneumonia admissions (i.e. highest in infants). These observations suggest, at most, a small severe disease contribution of endemic HCoVs in this tropical setting and offer insight into the potential future burden and epidemiological characteristics of SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL